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Outline

● The LArTPC.

● Physics with MicroBooNE.

● The MicroBooNE detector.
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LArTPC Operation
● Charged particles in argon create electron-ion pairs and scintillation 

light.
● Electrons are drifted towards the anode wires.
● Multiple anode planes together with drift time allow 3D reconstruction.
● Collected charge allows calorimetric reconstruction.

time
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US LAr R&D Program
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MicroBooNE Physics Goals
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MiniBooNE

● MiniBooNE, a Cherenkov 
detector, ran on the Booster 
beam line.

● It observed an excess of ν
e
-like 

signal in the νµ beam line.
● This result together with recent 

short baseline measurements 
of neutrinos from nuclear 
reactors and radioactive 
sources hint at possible 
oscillations into a sterile 
neutrino.

● It is not possible to determine 
whether the MiniBooNE signal 
is due to electrons or photons. 

Phys. Rev. Lett. 110, 161801 (2013)
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γ/e 
separation in LAr

● The LArTPC provides a unique 
way to differentiate between 
electrons and photons based 
on the ionization at the start of 
the EM-shower.

●  MicroBooNE is situated on the 
same beam line as MiniBooNE 
and will be able to determine 
whether the excess is a result 
of electrons or photons.

● Perfecting e/γ separation will 
be necessary for future long 
baseline ν

e
 appearance 

searches.

MC

MC

MC

ν
e
CC → e + p

νµΝC → p+ π0
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Cross-Section Physics

● The energy region accessible to 
MicroBooNE (~1GeV) is less 
explored than higher energies.

●No measurements for argon in 
this region.

●MicroBooNE will be able to 
explore a whole range of 
topologies to fill this gap.

MC

µ  + p
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Nuclear effects

● Argon is a large nucleus and nuclear 
effects will play a role in what we 
observe as final states

● ArgoNeuT has seen effects of FSI 
and hints of nucleon-nucleon 
correlations (talk by J.Asaadi). 

● MicroBooNE will have a smaller wire 
pitch (3mm vs 4mm - better 
precision) and more statistics.

ArgoNeuT Data
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SuperNova neutrinos

● CC ν
e
 Absorption (on Ar) is the dominating 

process,                                                              
           @ Eν=20MeV σ

abs
 = 6x10-41cm2

● Complementary to WC detectors (mainly 
sensitive to anti-ν

e
)

●LAr can detect the interaction of the de-
excitation gammas from the excited K states
●MicroBooNE cannot trigger on SN, due to 
surface location and will rely on a trigger from 
SNEWS.

●Expect ~10-20 from SN in galactic center (in 
a time period of ~20s).

νe+Ar→K
*+e-

ArgoNeuT data

γ interactions

I Gil-Botella and A Rubbia JCAP10(2003)009
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Proton Decay 
Backgrounds

●Future large liquid argon 
detectors can be competitive in 
proton decay studies by virtue of 
being able to reconstruct 
topologies difficult for Cherenkov 
detectors.

●MicroBooNE will be able to refine 
reconstruction techniques for the 
relevant topologies and study their 
backgrounds.

K+ → + 0

MC

Cosmic Ray
MicroBooNE
DetectorRock

K0
L K+
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What would you like to 
operate a TPC?

● A source of neutrinos.
● Time Projection Chamber.
● High Voltage to drift electrons.
● Argon, cooled and pure.
● Photomultipliers.
● Readout electronics + DAQ.
● UV Laser.
● A cryostat to hold it all in.
● A building to put the cryostat.
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Booster Neutrino Beam + 
NuMI Neutrino Beam 

Booster Flux at MicroBooNE●MicroBooNE is 
positioned on the 
Booster Beam line, just 
in front of the 
MiniBooNE detector.

●It will also see neutrino 
from the higher energy 
off-axis NuMI beam.

●This allows for a diverse 
and rich physics 
program. BNB NuMI

POT (3 years) 6x1020 8x1020

Nm CCQE 66,000 25,000

NC p0 8,000 3,000

Ne CCQE 400 1,000

Total 143,000 60,000

      NuMI Flux at MicroBooNE

ν
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νµ
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ν
e

νµ

νµ

ν
e

ν
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TPC+wires
● 87 tons (active mass).
● 256 cm drift.
● 233 cm chamber height.
● 1036 cm length.
● Holds more than 250 

ArgoNeuT TPCs.
● 8256 wires (3mm pitch) in 3 

planes:
–  3456 Collection channels.

–  4800 Induction channels.

● All wires mounted and ready!
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TPC+wires

collection

induction 1 induction 2

● Wires mounted on wire 
carrier boards.

● Three orientations give 
redundancy in 
reconstruction and break 
degeneracies.

● Wire tension is being 
tested. 

● The TPC will the be rolled 
into the cryostat using 
special rails.
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High Voltage

● The cathode plane is 
made of nine stainless 
steel sheets.

● The HV feed through is 
modeled after an ICARUS 
design. 

● Need to generate field to 
sustain 2.56 meter drift.

● Require -128 kV at the 
cathode for 0.5kV/cm field.
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Argon cooling and 
purification

● Argon needs to be pure – impurities 
attach the drifting charge and 
weaken the signal.

● Constant recirculation through CuO
2
 

and molecular sieve to remove 
impurities.

● Will use argon gas piston to remove 
air from cryostat (although we are 
capable of evacuation). The 
technique has already been shown to 
work in LAPD.

● The cryogenic system is being 
deployed in the detector hall and 
getting ready for a test run.
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Photomultipliers

● Liquid argon produces  
scintillation light (40k 
photons/MeV).

● It is in the VUV range, 
so need a wavelength 
shifter to see it in PMTs.

● Will use acrylic plates 
coated with TPB.

● PMTs already installed 
in the cryostat!
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Cold Electronics

● Cold electronics are the 
same as those to be used 
in LBNE.

● Lower noise, and allows 
driving the signal longer 
distances (important for 
future large detectors).

● Motherboards installed on 
the wire carrier boards.

● All channels tested, one 
feed-through at a time.
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UV Laser
100 laser events

field map

after correction

● UV Laser being installed 
to use for calibration.

● Allows mapping potential 
field distortions with a 
“track” guaranteed to be 
straight - muons can 
undergo multiple 
scattering.

● Laser goes in via optical 
feedthrough.

● Internal mirror allows 
remote change of angle.
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The Cryostat

● The Cryostat is already 
at Fermilab.

● TPC insertion has been 
tested. 

● Once the TPC is in, the 
endcap will be welded on 
and the cryostat  
transported to the 
detector building.

● The cryostat will be 
insulated with foam.
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Liquid Argon Test Facility 
(LArTF)

● The building is 
ready.

● The preparations to 
host the detector are 
in full swing.

● DAQ racks already 
in place.

● The cryostat with 
TPC inside will be 
lowered by crane.
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Conclusions

●The construction of the MicroBooNE detector is 
nearing completion. 

●After the final touches it will be transported to 
the detector hall. 

●We're looking forward to taking physics data in 
2014.

●Stay tuned!
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Muito Obrigado!
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Physics with LArTPCs

MiniBooNE excess Sterile neutrino(s)
CP violation, 

Mass Hierarchy

The LArTPC is becoming the go-to technology in neutrino physics

+Several other 
projects 
throughout the 
world

The physics effects we want 
to measure are becoming 
more and more subtle. Need 
to keep errors as small as 
possible. Increasing 
statistics is hard! So let's try 
systematic errors. 

The physics effects we want 
to measure are becoming 
more and more subtle. Need 
to keep errors as small as 
possible. Increasing 
statistics is hard! So let's try 
systematic errors. 

No CP violation Maximal CP violation

L=1300km L=1300km
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Cold Electronics
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LSND and MiniBooNE
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Cross-Section Physics
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MicroBooNE sensitivities

Photon-like signal

Electron-like signal
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