The MicroBooNE TPC trigger and GPS timing studies

Leonidas N. Kalousis (Virginia Tech.) for the MicroBooNE collaboration APS meeting, Denver, April 2013

MicroBooNE

- MicroBooNE will be the largest Liquid Argon Time Projection Chamber (LAr TPC) operating in the United States (US).
- The primary objectives of this experiment are:
 - The investigation of the MiniBooNE low energy excess
 - Detailed measurements of neutrino interaction cross-sections and,
 - Study of the background related to proton decay searches in massive LAr detectors; such as LBNE, LBNO and Okinoshima.
- Of course all this effort is expected to further advance the LAr detector concept; a very promising technology well-suited for neutrino physics.
- Additional searches with the MicroBooNE detector include:
 - Burst neutrinos and,
 - Neutrinos from supernova explosions (SN).

Experimental layout

 MicroBooNE (just like MiniBooNE) will be installed along the Booster Neutrino Beam (BNB) in Fermi National Laboratory.

- Placed at a distance of ~470 m from the neutrinos' creation point in the Liquid Argon Test Facility (LArTF).
- It is expected to start data taking in 2014 and run for 2-3 years in the neutrino mode accumulating 6.6 10²⁰ POT.

BNB and NuMI beamlines

 Besides BNB MicroBooNE will also receive Neutrinos from the Main Injector beamline (NuMI).

The MicroBooNE TPC

Characteristics:

- ~1.6 ms drift time (~2.5 m drift length)
- 8256 total channels
- Three planes of wires at 3 mm pitch
 - One collection plane at 0° from vertical
 - Two inductions planes at ±60°
- Optical system of 30 cryogenic PMTs

Current status (under construction):

- Field cage already built
- Wire planes constructed
- Cryostat delivered
- The LArTF building will be soon ready

10.4 m \times 2.3 m \times 2.5 m uniform field of 500 V/cm 170 tons of purified LAr (active volume 83 m³)

Triggering options

- Neutrinos from the BNB have a well-known timing structure
 - The signal gate is a priori known.
- Besides this, MicroBooNE can also trigger leaning on the timing information obtained from the optical system.
 - Contrast to the electron drift times (~ms) light is propagated almost simultaneously (~ns).
- Additionally we are exploring the possibility to "trigger" events according to their signature in the TPC.
- This will be an offline "trigger" termed as the TPC trigger (and will occupy the first part of this talk ...).
- This is an important ingredient for :
 - Cosmic ray studies
 - Studies of background sources relevant for proton decay

Continuous data stream

- Two distinct data streams envisaged in MicroBooNE.
 - Beam events and the SN continuous data flow

One Hard Drive (HD) per section of the TPC

SN stream:

- Saved continuously in a disk.
 - Large amount of data
- Stored in a circular buffer and retained there for an hour.
- Develop fast algorithms to select the interesting events

Requirements:

- Robust performance
- Minimize CPU time

The TPC trigger

- U, V and Y wires overlap in a region of 30-60 cm at the top of each crate.
- Requiring a time coincidence between groups of U, V and Y wires will signal a
 particle that comes through the top of the TPC.
- Additionally hits in the Y plane only betray vertical going particles (cosmic muons)
- In general, exploit the geometry of the TPC to characterize topologies.

GPS timing

 For the global timing information we use, naturally, a commercial GPS card (Symmetricom PCIe).

- Its software has been modified for our linux machines (Yale).
- A customized firmware developed to cast the Trigger Board (TB) time-stamp (Nevis Labs).

Trigger board time-stamp

I. Consecutive frames of 1.6 ms:

II. Every frame consists of 2 MHz samples:

III. Samples digitized by 16 MHz clock:

Each sample is split in eight divisions; ultimate graining 62.5 ns

Combine the two functionalities

(Current work at Virginia Tech.)

- The GPS card will "interrupt" normal data taking with a one pulse per second (PPS).
- Consequently the TB will issue its three-fold counter stamp to this external signal.
- Then a combined software will intervene and relate the time of this event to the TB timestamp.
 - Future triggers will also be assigned with the proper timing.
- This will allow:
 - Precise global timing for all data
 - Correlate events with possible SN explosions

Ending themes

- MicroBooNE will be a very beautiful and a multi-purpose detector
- ... and presumably will deliver some equally wide and rich physics results!
- The TPC trigger will be an integral part of the detector and the read-out, allowing to study non-beam events; a rather challenging task.
- When completed, this work could influence and further inspire future and existing LAr TPC detectors.
- MicroBooNE is expected to start data taking in 2014.
- Until then stay tuned!

Extra details and information

BACKUP SLIDES

MiniBooNE low-energy excess

arxiv.org/1207.4809

Tension below 475 MeV

Limitations of the 2v model? Misidentified backgrounds?

 $200 \text{ MeV} < E_{v} < 1250 \text{ MeV}$

Neutrino mode:

Data: 952 events

• Background: 790.0 ± 28.1 ± 38.7

• Excess: $162.0 \pm 47.8 (3.4 \sigma)$

Antineutrino mode:

Data: 478 events

Background: 399.6 ± 20.0 ± 20.3

• Excess: 78.4 ± 28.5 (2.8 σ)

Combined:

Excess: 240.3 ± 34.5 ± 53.6

• 3.8 σ statistical significance

G. Karagiorgi, The MicroBooNE Physics program, Neutrino 2012

e/γ discrimination

G. Karagiorgi, Current and Future Liquid Argon Experiments, NuInt 2012

LArTF chronicles

TPC cage construction

Arrival of the cryostat

GPS at DAB

GPS antenna placed at the roof of D-zero assembly building

