

0

MicroBooNE Electronics

David Kaleko for the MicroBooNE Collaboration April 16, 2013 APS: Denver, CO

Outline

- General MicroBooNE
- TPC Electronics
 - Data volumes, data flow
- PMT Electronics
 - Data volumes, data flow
 - Triggering
- Supernova readout

General MicroBooNE

- Liquid Argon TPC: 170ton LAr, 86ton active.
- 32 cryogenic PMTs: triggering and timing information.
 - Also reconstruction, cosmic ID, etc.
- TPC:
 - 3mm wire spacing
 - 2.5m drift (1.6ms)
 - 500V/cm
 - 3 wire readout planes (Y, U, V)
 - 8256 channels (cold preamps)
- Located on surface: ~5kHz cosmics (8 per 1.6ms drift time)

- Includes cold electronics, warm interface electronics, digitizing/data handling electronics, cabling, signal feedthroughs.
- **TPC Electronics**

Warm cables

TPC Electronics

- Combination of induction [[] (bipolar) and collection (unipolar) channels.
 - Differing baselines configured in ASICs.
- 2 MHz 12-bit ADC sampling rate (0.5 μ sec/ tick)
- 4 x 1.6ms frame readout duration
 - Trimmed in FPGA:1.6ms before beam trigger, 3.2ms after
- 64 channels/board: ~130 boards (9 crates)

Sample calibration pulses: charge inserted onto ASICs, then read out/digitized. Note lower baseline at ~450 ADC (induction channel)

TPC Electronics: Data Volumes

- Beam spill rate of 10Hz, not every spill has neutrino events.
- ~160 MBTPC data per event (uncompressed data volume)
- Lossless data reduction: Huffman Coding
 - Successive data samples vary slowly in time.
 - Up to factor 10-15 reduction possible. Expected 8x.
- Average data volume further reduced by requiring PMT trigger in coincidence with beam gate.

U(n+1)-U(n)	Code
-4 and others	Full 16 bits word
-3	000001
-2	0001
-1	01
0	1
+1	001
+2	00001
+3	0000001

PMT Electronics

 Includes signal shaper boards, PMT feedthrough, HV/signal splitters, and a trigger board.

PMT Electronics

- 64MHz (16ns) digitization.
- Unipolar shaper
 - 60ns shaped peaking time
 - 2-3 digitized samples on rising edge
 - Allows for accurate event start time determination.
- Responsible for generating PMT triggers.

Shaped 25mV 25ns negative square pulse (differentially driven)

Triggering with PMTs

- Several threshold/discriminator/timing conditions implemented in FPGA on PMT Front End Module.
 - Include pulse amplitude on single PMTs, summed coincidences on multiple PMTs, delayed coincidences (Michel electrons).

TPC + PMT Readout Data for an Event

Supernova Stream

- Two readout paths: trigger (events) and supernova.
- Continuous readout with temporary data storage awaiting a SNEWS alert.
 - \circ Stores on the order of \sim a few hours.
- 30 GB/s data volume
- Additional "dynamic decimation" used for supernova stream
 - Not lossless. Data reduction $\sim x(1/16)$
 - Combined with Huffman to reach required 80x data size reduction.

Conclusion

- MicroBooNE electronics:TPC + PMT
 - Combined cold + warm components
- PMT system produces trigger signals for entire readout and DAQ system.
- Readout functions both in trigger and continuous supernova stream.
- All warm electronics readout channels tested and characterized.
- First crate at Fermilab to be used for cold electronics installation tests.
- Data taking starts beginning of 2014!

Backup Slides