The Fermilab Short-Baseline Neutrino Program: A Search for Sterile Neutrinos and A Study of v-Argon Interactions

Leslie Camilleri Columbia University

Neutrino Interactions CETUP July 22-31, 2014

Plan of Talk

• The Oscillation program and its motivation.

- How do we address it.
- The R&D program
- Detector descriptions.
- Sensitivities to Sterile Neutrinos.
- Measurements of v-Argon cross-sections
- Status and Conclusions

Many techniques I will describe are currently being developed and used by ArgoNeut. My thanks to ArgoNeut for allowing me to use some of their data as examples.

Could be explained by additional neutrino with a mass of ~ 1 eV/c²: Sterile (no Z^0 coupling)

Leslie Camilleri, CETUP

Motivation or, the Genealogy of the BNB program

Bands at the Beach Club

Argon and the Noble Gases

Saturday, July 19th approx. 5:30pm

Why is Liquid Argon different from MiniBooNE?

• MiniBooNE searched for $v_{\mu} \rightarrow v_{e}$ oscillations

- Looked for excesses of v_e in a v_{μ} beam and of $\overline{v_e}$ in a $\overline{v_{\mu}}$ beam.
- $\bullet v_e$ identified by their Charged Current Interactions \rightarrow e shower in final state

→ Fuzzy Cerenkov Ring

- But MiniBooNE could not distinguish between a photon and an electron shower.
- Is the excess due to
 - Electrons (\rightarrow oscillations to sterile)?
 - Or Photons ?

Liquid Argon is good at

- Distinguishing between electrons and photons.
- Reducing photon background
- Neutrino energy reconstruction.

Nature of MiniBooNE excess → Main MicroBooNE task

What should we be looking for?

To reproduce the same conditions as in MiniBooNE Locate MicroBooNE in same beam and at ~ same distance as MiniBooNE.

MicroBooNE(170 tons) at 470m (just upstream of MiniBooNE)

• If the LSND and/or MiniBooNE $v_{\mu} \rightarrow v_{e}$ signals are due to a sterile v

Then: ν_μ → ν_s → ν_e
 Implies ν_e appearance AND ν_μ disappearance
 Must look for BOTH.

What is needed?

• Determine the INTRINSIC v_e flux in the v beam for the v_e appearance search

• Constrain the \mathbf{v}_{μ} flux for \mathbf{v}_{μ} disappearance search

- Constrain the v_e from μ decay using the v_{μ} flux.
- Is the MiniBooNE excess **intrinsic** to the beam or distance dependent?

NEAR Detector: LAr1-ND(150tons) at 110m

July 24, 2014

Leslie Camilleri, CETUP

What should we be looking for?

To maximize a potential oscillation effect, increase the detector mass and its baseline :

ICARUS (760 tons) at 600m (downstream of MiniBooNE)

• The full capabilities of a 3-detector configuration are currently being evaluated.

Presentation at the Fermilab PAC this week.

For most of the rest of this talk: Concentrate on MicroBooNE and LAr1-ND.

And present what could be achieved with:

• a 3-year run of MicroBooNE (6.6 x 10²⁰ POTs)

combined with

• LAr1-ND taking data during the 3^{rd} year (2.2 x 10^{20} POTs)

The Short Baseline Physics Program

Resolve the cause and origin of the MiniBooNE low energy excess.

Search for Oscillations at a high Δm^2 .

 $\succ v_{\mu} - v_e$ appearance.

 $\succ v_{\mu}$ disappearance.

Measure Neutrino-Argon interactions with high statistics in a region relevant to LBNE
Using

SuperNova sensitivity.

And, hopefully, another beam.....

July 24, 2014

The R&D Program

MicroBooNE

- Cold electronics: preamps in cryostat.
 - Shorter wire-preamp cables and lower temperature \rightarrow Decrease noise.
- Filling without evacuation.
- Longer (2.5m) drift length. (ICARUS: 1.5m)
- TPC field calibration using a Laser.
- Reconstruction.
- Continuous readout for SuperNova purposes
- Background to proton decay studies.
- ◆ LAr1-ND: Closely aligned to the Long Baseline technology
 - More electronics in the cold: including digitization.
 - Membrane Cryostat
 - TPC according to Long Baseline design.

Where are we located?

The Fermilab Booster Neutrino Beam (BNB) (and NUMI beam in off-axis configuration).

Where are we located relative to an oscillation pattern?

The MicroBooNE Detector

July 24, 2014

Leslie Camilleri, CETUP

The MicroBooNE Liquid Argon Time Projection Chamber

Neutrinos interact in 89 tons (active volume) Liquid Argon \rightarrow charged particles.

The MicroBooNE Photodetectors

LAr scintillates in the UV at 128nm: Use it

To trigger on events in time with beam gate.To time and reject cosmic rays within drift time.

> 32 Hamamatsu R5912-02 14 stage 8 inch pmt's.

Located behind collection plane

Plate coated with Tetraphenyl-butadiene (TPB) in front of each pmt: to shift UV light to visible

Triggered and SuperNova Continuous readout

LAr1-ND

LAr1-ND Cold Electronics

COLD in LAr1-ND

LAr1-ND Light Collection

Compact light-guide collection system to detect LAr scintillation light.

ICARUS

What is the MiniBooNE excess due to? Electrons or Photons?

Electron : Connected to primary vertex And singly ionizing track in first ~ 2.4cm before shower develops.

ArgoNeut validates the technique

BNB Flux Spectra in v mode

July 24, 2014

Leslie Camilleri, CETUP

MiniBooNE Low Energy Excess

Scaling signal from MiniBooNE: Down for Mass, up for Efficiency Scaling backgrounds according to better PID and better flux knowledge

	MicroBooNE	LAr1-ND	
Total Events	97	775	
"Low-energy Excess"	47.6	380	
Background	49.4	394.6	
Statistical Error	7.0	19.9	
Systematic Error	6.6	52.2	
Total Error	9.6	55.9	
Statistical Significance of Excess	6.8σ	19.1 σ	
Total Significance of Excess	5.0 σ	6.8 σ	
(2.2 x 10 ²⁰ POTs		

What would we expect for an oscillation at the Global best fit?

• $v_{\mu} \rightarrow v_{e}$ appearance in the context of 3 active + 1 sterile neutrino model (3+1)

Example Signal: $\Delta m^2 = 0.43 \text{ eV}^2$, $\sin^2 2\theta_{\mu e} = 0.013$

Cuts to Select Electrons, Reject y's

2.2 x 10²⁰ POT exposure for LAr1-ND

6.6 x 10²⁰ POT exposure for MicroBooNE

The power of a Three Detector Combination: $v_{\mu} \rightarrow v_{e}$ sensitivity

v_{μ} Disappearance

• Testing v_{μ} disappearance with a near detector constraint

 $\Delta m_{41}^2 = 1.2 \text{ eV}^2 \text{ sin}^2 2\theta_{\mu\mu} = 0.09$

v_{μ} Disappearance

Exploiting the full correlations

- The observed electron candidate event rate in LAr1-ND at 110m is used to constrain the expected rate in MicroBooNE and ICARUS.
- The v_{μ} are also used as a constraint as they have the same parent as the μ 's that generate
- part (75%) of the intrinsic v_e background.
- Simultaneous fit to Near, Far, v_{μ} and v_{e} data sets is used to apply the constraints.

Using a Flux Correlation Matrix between Far (600m) and Near(110m) detectors and between v_{μ} and v_{e} .

Obtained using ReweightingTechnique Vary flux: reweight simulated events of **BOTH** ND and FD detectors. with each variation

Strong Correlation between Far (600m) and Near(110m) detectors v_{e} fluxes.

Flux Correlation Matrix

Neutrino – Argon Interactions

Neutrino-Argon Interactions at low energy (~ 1 GeV).

- Why are they important?
 - > Only measurements on Argon: ArgoNeut.
 - > Few measurements in this energy range.
 - > Not very consistent.

- **Important**
 - > In their own right.
 - ► For LBNE 2nd max.
 - ≻ HyperK

Expected Data Sample

MicroBooNE: 6.6 x 10^{20} protons on target: ~ 120k CC + NC LAr1-ND: 2.2 x 10^{20} protons on target (ONE year of data taking): ~1.1M CC + NC

Process	Reaction	MicroBooNE 6.6 x 10 ²⁰ POT	LAr1-ND 2.2 x 10 ²⁰ POT	
CC QE	$\nu_{\mu} n \rightarrow \mu^{-} p$	48,276	470,497	
CC RES	$\nu_{\mu} N \rightarrow \mu^{-} N$	26,852	220,177	
CC DIS	$\nu_{\mu} N \rightarrow \mu^{-} X$	10,527	82,326	
CC Coherent	$\nu_{\mu} \operatorname{Ar} \rightarrow \mu^{-} \operatorname{Ar} + \pi$	376	3004	

Data presentation.

Instead of unravelling specific "true at production" final states taking into account reinteractions

Present topological final states based on number of protons, number of pions

Process	Reaction	MicroBooNE 6.6 x 10 ²⁰ POT	LAr1-ND 2.2 x 10 ²⁰ POT
CC Inclusive		88,098	787,847
СС 0π	$\nu_{\mu} N \rightarrow \mu^{-} + Np$	56,580	535,673
	$.v_{\mu} N \rightarrow \mu^{-} + 0p$	12,680	119,290
	$.v_{\mu} N \rightarrow \mu^{-} + 1p$	31,670	305,563
	$.v_{\mu} N \rightarrow \mu^{-} + 2p$	5,803	54,287
	$v_{\mu} N \rightarrow \mu^{-} + \geq 3p$	6,427	56,533
CC 1 π^{\pm}	$\nu_{\mu} N \rightarrow \mu + \text{nucleons} + 1 \pi^{\pm}$	21,887	176,361
$CC \ge 2\pi^{\pm}$	$\nu_{\mu} N \rightarrow \mu + \text{nucleons} + \geq 2\pi^{\pm}$	1,953	14,659
$CC \ge 1\pi^0$	$v_{\mu} N \rightarrow \mu + \text{nucleons} + \geq 1\pi^0$	9,678	76,129

Similarly for Neutral Current Interactions

Leslie Camilleri, CETUP

Inclusive cross section

Charged Current Inclusive in LAr1-ND: Muon measurement.

Contained muons: Momentum measured through range and dE/dx with **5%** Resolution

Can we also use non-contained muons?

- Identification through dE/dx as a function of distance from exit point.
- Momentum measurement: through multiple scattering.

For contained tracks > 1m according to ICARUS data: Resolution: 30%.

Contained: **50%** Non-contained (Long > 1m): **34%** Total: **84%**.

QuasiElastic

Questions: QE is an easy topology: 1 muon + 1 proton → Or is it?

Nuclear Reinteractions

Nuclear reinteractions \rightarrow NO proton or MANY Nucleons in Final State How do we know they are treated correctly in the simulation?

No proton

In NOMAD, the nuclear formation length was tuned such as to

equalize the cross sections calculated from the 2 samples:

>One Muon and No Proton sample

≻One Muon and One Proton sample

Two-protons

Can we identify them?

Use dE/dx as a function of residual range (distance from stopping point).

Minimum Kinetic energy: T_p > 20 MeV

$$\sim$$
 2 wires = 6mm

Build likelihoods using several measurements along track. Example: Simulation and Truth

July 24, 2014

37

Can we also count neutrons?

Allows:

- Better Nucleon multiplicity measurement in several reactions.
- Better hadronic energy measurement.

Coherent production at $E_v < 2$ GeV.

 v_{μ} interacts with Ar nucleus as a whole.

• CC
$$\pi^+$$
: ν_{μ} + Ar \rightarrow Ar + μ^- + π^+

NO evidence at low energy:

SciBooNE: $\sigma(\cosh \pi^+) / \sigma(\nu_{\mu} CC) < 0.67 \text{ x } 10^{-2} \text{ at } 90\% \text{ C.L. at } < E_{\nu} > = 1.1 \text{ GeV}$

 v_{μ}

Ar

K2K: $\sigma(\cosh \pi^+) / \sigma(v_{\mu} CC) < 1.36 \times 10^{-2} \text{ at } 90\% \text{ C.L. at } < E_v > = 2.2 \text{ GeV}$

Above 2 GeV: Minerva: New data showing signal. ArgoNeut: First Argon data. LAr1-ND: ~ 3000 events according to GENIE. Good accuracy measurement. Excellent for extra activity at vertex. Pion dE/dx identification and full containment.

 $\bigstar NC \pi^0 : \nu_{\mu} + Ar \rightarrow Ar + \nu_{\mu} + \pi^0$

SciBooNE and MiniBooNE found definite signal at $E_v \sim 1$ GeV.

LAr1-ND: π^0 very good signature in LAr. Vertex activity.

July 24, 2014

Leslie Camilleri, CETUP

 $\mu^{-}(\nu_{\mu})$

 $\pi^{+}(\pi^{0})$

Resonance production.

LAr1-ND: With good proton and p/π^+ identification should contribute at low energy.

Resonance cross section (NOMAD Preliminary)

Presented at CETUP Last week

LAr1-ND: Good accuracy on Argon, below the NOMAD points.

SuperNovae neutrino's

Neutrino events were observed for SN1987a

Between 10 and 20 Absorption events In each of MicroBooNE and LAr1-ND About 100 events in ICARUS

 $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

expected for a **galactic** supernova

Electron Energy: tens of MeV

I. Gil-Botella and A. Rubbia JCAP 10(2003)009

Cannot trigger on these: Data continuously stored in a cyclic buffer For ~ a few hours, waiting for a SNEWS alert \rightarrow store data permanently.

R&D: Background to Proton Decay \rightarrow K⁺ ν_{μ}

Background to Baryon Non-Conservation: $n\overline{n}$ oscillations \rightarrow annihilation

Status and Schedule

≻MicroBooNE:

- ◆Installation in Progress.
- Cryostat (with TPC+PMT's) moved to final position June 23rd.
- ◆Insulation, electronics platform and filling next.
- ◆ Data-taking as of End 2014; 3 years for a total of 6.6 x 10²⁰ POT's

≻LAr1-ND and ICARUS:

Going through approval process

Data Spring 2018?

Possible Extensions of the Program

Anti Neutrino running.

 Magnetizing one or more detectors

 Reduces "wrong" sign background (especially interesting in antineutrino running).
 Better momentum measurements.
 "Beam OFF-target" running.
 Searches for exotic particles produced absorber

LAr1-ND Collaboration

C. Adams¹, C. Andreopoulos², J. Asaadi³, B. Baller⁴, M. Bishai⁵, L. Bugel⁶, L. Camilleri⁷,
F. Cavanna¹, H. Chen⁵, E. Church¹, D. Cianci⁸, G. Collin⁶, J.M. Conrad⁶, G. De Geronimo⁵,
A. Ereditato⁹, J. Evans¹⁰, B. Fleming⁻¹, W.M. Foreman⁸, G. Garvey¹¹, R. Guenette¹², J. Ho⁸,
C.M. Ignarra⁶, C. James⁴, C.M. Jen¹³, B.J.P. Jones⁶, L.M. Kalousis¹³, G. Karagiorgi⁷,
W. Ketchum¹¹, I. Kreslo⁹, V.A. Kudryavtsev¹⁴, D. Lissauer⁵, W.C. Louis¹¹, C. Mariani¹³,
K. Mavrokoridis², N. McCauley², G.B. Mills¹¹, Z. Moss⁶, S. Mufson¹⁵, M. Nessi¹⁶,
O. Palamara^{*1}, Z. Pavlovic¹¹, X. Qian⁵, L. Qiuguang¹¹, V. Radeka⁵, R. Rameika⁴,
C. Rudolf von Rohr⁹, D.W. Schmitz^{*8}, M. Shaevitz⁷, M. Soderberg³, S. Söldner-Rembold¹⁰,
J. Spitz⁶, N. Spooner¹⁴, T. Strauss⁹, A.M. Szelc¹, C.E. Taylor¹¹, K. Terao⁷, L. Thompson¹⁴,
M. Thomson¹⁷, C. Thorn⁵, M. Toups⁶, C. Touramanis², R.G. Van De Water¹¹, M. Weber⁹,
D. Whittington¹⁵, B. Yu⁵, G. Zeller⁴, and J. Zennamo⁸

¹Yale University, New Haven, CT ² University of Liverpool, Liverpool, UK ³Syracuse University, Syracuse, NY ⁴Fermi National Accelerator Laboratory, Batavia, IL ⁵Brookhaven National Laboratory, Upton, NY ⁶Massachusetts Institute of Technology, Boston, MA ⁷Columbia University, Nevis Labs, Irvington, NY ⁸University of Chicago, Enrico Fermi Institute, Chicago, IL ⁹University of Bern, Laboratory for High Energy Physics, Bern, Switzerland ¹⁰University of Manchester, Manchester, UK ¹¹Los Alamos National Laboratory, Los Alamos, NM ¹²University of Oxford. Oxford. UK ¹³Center for Neutrino Physics, Virginia Tech, Blacksburg, VA ¹⁴University of Sheffield, Sheffield, UK ¹⁵Indiana University, Bloomington, IN ¹⁶CERN, Geneva, Switzerland ¹⁷University of Cambridge, Cambridge, UK

10 US institutions

- 3 DOE National Laboratories
- 6 NSF institutions

7 European institutions

- 5 UK institutions
- I Swiss institution
- CERN

11 institutions also on MicroBooNE. Most also LBNE collaborators.

*Spokespersons

MicroBooNE Collaboration

MicroBooNE Collaboration + Project Team

Brookhaven: M. Bishai, H. Chen, K. Chen, S. Duffin, J. Farrell, F. Lanni, Y. Li, D. Lissauer, G. Mahler, D. Makowiecki, J. Mead, X. Qian, V. Radeka, S. Rescia, A. Ruga, J. Sondericker, C. Thorn, B. Yu, C. Zhang University of Cambridge: A. Blake, J. Marshall, M. Thomson University of Chicago: W. Foreman, J. Ho, D. Schmitz, J. Zennamo University of Cincinnati: R. Grosso, J. St. John, R. Johnson, B. Littlejohn Columbia University: N. Bishop, L. Camilleri, D. Caratelli, C. Chi, V. Genty, G. Karagiorgi, D. Kaleko, B. Seligman, M. Shaevitz, B. Sippach, K. Terao, B. Willis Fermilab: R. Acciarri, L. Bagby, B. Baller, D. Bogert, B. Carls, H. Greenlee, C. James, E. James, H. Jostlein, M. Kirby, S. Lockwitz, B. Lundberg, A. Marchionni, S. Pordes, J. Raaf, G. Rameika⁺, B. Rebel, A. Schukraft, S. Wolbers, T. Yang, G.P. Zeller^{*} Kansas State University: T. Bolton, S. Farooq, S. Gollapinni, G. Horton-Smith Los Alamos: G. Garvey, J. Gonzales, W. Ketchum, B. Louis, G. Mills, Z. Pavlovic, R. Van de Water, K. Yarritu MIT: W. Barletta, L. Bugel, G. Collin, J. Conrad, C. Ignarra, B. Jones, J. Moon, M. Moulai, J. Spitz, M. Toups, T. Wongjirad Michigan State University: C. Bromberg, D. Edmunds New Mexico State University: T. Miceli, V. Papavassiliou, S. Pate, K. Woodruff Otterbein University: N. Tagg total team (collaboration + project): University of Oxford: G. Barr, M. Bass, R. Guenette 3 countries University of Pittsburgh: S. Dytman, D. Naples, V. Paolone * spokespeople, 23 institutions Princeton University: K. McDonald, B. Sands + project manager 134 collaborators (includes project team) Saint Mary's University of Minnesota: P. Nienaber SLAC: M. Convery, B. Eberly, M. Graham, D. Muller, Y-T. Tsai Syracuse University: J. Asaadi, J. Esquivel, M. Soderberg University of Texas at Austin: S. Cao, J. Huang, K. Lang, R. Mehdiyev University of Bern, Switzerland: A. Ereditato, D. Goeldi, I. Kreslo, M. Luethi, C. Rudolf von Rohr, T. Strauss, M. Weber INFN, Italy: F. Cavanna, O. Palamara (currently at Yale) Virginia Tech: M. Jen, L. Kalousis, C. Mariani Yale University: C. Adams, E. Church, B. Fleming*, E. Gramellini, A. Hackenburg, B. Russell, A. Szelc

ICARUS Collaboration

M. Antonello¹, B. Baibussinov², V. Bellini^{4,5}, H. Bilokon⁶, F. Boffelli⁷, M. Bonesini⁹, E. Calligarich⁸, S. Centro^{2,3}, K. Cieslik¹⁰, D. B. Cline¹¹, A. G. Cocco¹², A. Curioni⁹, A. Dermenev¹³, R. Dolfini^{7,8}, A. Falcone^{7,8}, C. Farnese², A. Fava³, A. Ferrari¹⁴, D. Gibin^{2,3}, S. Gninenko¹³, F. Guber¹³, A. Guglielmi², M. Haranczyk¹⁰, J. Holeczek¹⁵, A. Ivashkin¹³, M. Kirsanov¹³, J. Kisiel¹⁵, I. Kochanek¹⁵, A. Kurepin¹³, J. Łagoda¹⁶, F. Mammoliti⁴, S. Mania¹⁵, G. Mannocchi⁶, V. Matveev¹³, A. Menegolli^{7,8}, G. Meng², G. B. Mills¹⁷, C. Montanari⁸, F. Noto⁴, S. Otwinowski¹¹, T. J. Palczewski¹⁶, P. Picchi⁶, F. Pietropaolo², P. Płoński¹⁸, R. Potenza^{4,5}, A. Rappoldi⁸, G. L. Raselli⁸, M. Rossella⁸, C. Rubbia^{19,14,a}, P. Sala²⁰, A. Scaramelli²⁰, E. Segreto¹, D. Stefan¹, J. Stepaniak¹⁶, R. Sulej¹⁶, C. M. Sutera⁴, D. Tlisov¹³, M. Torti^{7,8}, R. G. Van de Water¹⁷, F. Varanini³, S. Ventura², C. Vignoli¹, H. G. Wang¹¹, X. Yang¹¹, A. Zani^{7,8}, K. Zaremba¹⁸

INFN, LNGS, Assergi (AQ), Italy¹⁾, INFN, Sezione di Padova, 35131 Padova, Italy²⁾, Dipartimento di Fisica, Università di Padova, 35131 Padova, Italy^{3),} INFN, Sezione di Catania, Catania, Italy⁵⁾, INFN, Laboratori Nazionali di Frascati (LNF), 00044 Frascati (Roma), Italy⁶⁾, Dipartimento di Fisica, Università di Pavia, 27100 Pavia, Italy⁷⁾, INFN, Sezione di Pavia, 27100 Pavia, Italy⁸⁾, INFN, Sezione di Milano Bicocca, Dipartimento di Fisica G. Occhialini, 20126 Milano, Italy⁹⁾, The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Kraków, Poland¹⁰⁾, Department of Physics and Astronomy, University of California, Los Angeles, USA¹¹⁾, INFN, Sezione di Napoli, Dipartimento di Scienze Fisiche, Università Federico II, 80126 Napoli, Italy¹²⁾, INR-RAS, Moscow, Russia¹³⁾, CERN, Geneva, Switzerland¹⁴⁾, Institute of Physics, University of Silesia, Katowice, Poland¹⁵⁾, National Center for Nuclear Research, Warszawa, Poland¹⁶⁾, Los Alamos National Laboratory, New Mexico, USA¹⁷⁾, Institute for Radioelectronics, Warsaw University of Technology, Warsaw, Poland¹⁸⁾, GSSI, L'Aquila (AQ), Italy¹⁹⁾, INFN, Sezione di Milano, 20133 Milano, Italy²⁰⁾

Conclusions

Looking forward to start data taking within 6 months with MicroBooNE:
Minimum low energy excess.
First look at LSND excess
Cross sections.

◆Hoping for approval of extra 2 detectors by PAC soon,

Next 3 years:
 Build LAr1-ND
 Refit ICARUS
 Analyze MicroBooNE data

Back Up

Magnetized LAr1-ND

- Two possible detector designs
 - Configuration A: The return yoke downstream of the neutrino beam and be instrumented with scintillator modules to form a muon spectrometer increasing the detector acceptance and allowing for particle ID for escaping charged pions
 - Configuration B: Compared to (A) there is an extended detector volume but contains no downstream spectrometer

Wrong Sign Contamination

- Charge selection (in antineutrino mode) is one of the main motivating factors for a magnetized detector
 - Neutrino background in the antineutrino beam

Laser Calibration in MicroBooNE

- Field non-uniformity arise
 - Distortion expected by Ar⁺ accumulation @ cathode
 - Needs to be calibrated out
- Laser Calibration System (LCS)
- LCS inject laser to ionize Ar along the path
 - $\lambda \approx 266$ nm, need high intensity to ionize
 - Distortion shows up in the reconstructed signal path

Plot & Diagram ... courtesy of C. Rudolf

Cold Electronics Performance

16 channel/chip charge amplifier: Adjustable Gain 4.7, 6.8, 14.0, 25.0 mV/fC Adjustable peaking time 0.5,1,2,3 µs, 5.5 mW/channel **Prototype Vertical** Cold Mother Board with prototype ASICs 11 10-1349-1 REV A KJW 03-21-12 Crosstalk < 0.3%0 0 REELEMENT NUTLING Test of the 8th Mother Board with 12 ASICs Populated Test of 10th Mother Board with Twelve v4 ASICs Populated 4000 Channel 128-159 Calibration Response July 13th, 2012 Gain = 14 mV/fC2500 Liquid Nitrogen 32 overlaid unipolar 3500 $\tau_p = 1 \ \mu s$ $C_{in} = 150 \ pF$ Channels in LN₂ e 3000 Gain 4.7 mV/fC ASIC 0 ASIC 1 ASIC 2 ASIC 3 ASIC 4 ASIC 5 ASIC 6 ASIC 7 ASIC 8 ASIC 9 ASIC 10 ASIC 11 1500 $C_{in} = 150 \text{ pF}$ Noise ~550e⁻ with ADC $C_{D} = 150 \text{pF} \text{ in } \text{LN}_{2}$ 2000 Channel-to-channel gain variation 500 for two chips is < +/-2%1000 channel 100 0 sample (time) 100 N

July 24, 2014

Membrane Cryostat

Original thought: Locate LAr1-ND in the SciBooNE Hall at 100m

MiniBooNE Low Energy Excess

Process	Events	Events	MiniBooNE	dE/dx	Total	Error	Error
	(µB)	(LAr1-ND)	unc.	unc.	unc.	(µB)	(LAr1-ND)
$\mu \rightarrow \nu_e$	21.5	171.3	0.26	0.1	0.28	6.0	47.7
${\rm K}^+ \rightarrow \nu_e$	6.4	51.3	0.22	0.1	0.24	1.55	12.4
$\mathrm{K}^0 \rightarrow \nu_e$	1.8	14.7	0.38	0.1	0.39	0.73	5.79
$ u_\mu \ { m CC}$	4.9	38.9	0.26	0.0	0.26	1.27	10.1
$ u_{\mu}e \rightarrow \nu_{\mu}e $	3.8	30.7	0.25	0.1	0.27	1.03	8.26
NC π^0	6.7	53.4	0.13	0.1	0.16	1.10	8.77
Dirt	0.9	6.9	0.16	0.1	0.19	0.16	1.31
$\Delta o N\gamma$	2.5	19.8	0.14	0.1	0.17	0.43	3.40
Other	0.9	7.6	0.25	0.1	0.27	0.26	2.04
Total	49.4	322.1				6.55	52.23
		MicroBooNE		LAr1-ND			
Total Events		97		775			
"Low-energy Excess"		47.6		380			
Background		49.4		394.6			
Statistical Error		7.0		19.9			
Systematic Error		6.6		52.2			
Total Error		9.6		55.9			
Statistical Significance of Excess		6.8σ		19.1 σ			
Total Significance of Excess		5.0 σ 6.		6.8 σ			

Probing Active to Sterile Oscillations with Neutral-Currents

- A unique probe of sterile neutrino oscillations, directly sensitive to any "sterile" flavor content, is available through neutral-current (NC) neutrino interactions. In this type of search, one looks for an overall depletion of the flavor-summed event rate.
- ► We have considered the NC π^0 channel, due to its characteristic event topology and kinematics. Unlike other NC channels, the presence of the two photons from the π^0 decay pointing back to a common vertex, with an invariant mass corresponding to m_{π^0} , provides a powerful discriminant against potential backgrounds.

Dark Matter Searches with Booster Beam Off-Target Running

LAr1-ND Schematics

