Measurement and Simulation of Cosmic Ray Background in LArTF for MicroBooNE

Katherine Woodruff
with
Vassili Papavassiliou (Prof.) Stephen Pate (Prof.)
Tia Miceli (Postdoc) Alistair McLean (Undergraduate)

APS 4 Corners Section Meeting

October 19, 2013
MicroBooNE

- A Time Projection Chamber (TPC) is a liquid or gas filled volume that allows for three dimensional tracking of particles

- MicroBooNE is a Liquid Argon TPC (LArTPC) designed to detect neutrino interactions
  - The liquid argon serves as a target for a neutrino beam
  - 80 ton active volume (170 ton total)
  - 2.6 m x 2.3 m x 10.4 m
  - Three wire planes on the TPC record the signals

- The first surface-level LArTPC of this size
  - The cosmic ray background needs to be measured at the location

image: http://www-microboone.fnal.gov/

Katherine Woodruff, et al.

New Mexico State University
Cosmic Rays

- Very high energy primary cosmic particles (mostly protons) interact with the Earth’s atmosphere producing showers of secondary cosmic particles.

Secondary pions and kaons can decay into muons.
- These muons can reach and penetrate the Earth’s surface.
- 3m of concrete would only absorb \(\sim 30\%\) of the muons.
- The cosmic ray muon rate at Earth’s surface is about \(130 \frac{\text{muons}}{\text{m}^2\text{s}}\).

Katherine Woodruff, et al.
New Mexico State University
Cosmic Rays in MicroBooNE

- It up to 1.6 ms for the electrons to reach the anode and for that information to be processed.
- The estimated cosmic ray rate in MicroBooNE is between 4 and 8 kHz.
- This gives a rate of \( \sim 6 \) to \( \sim 13 \) muons per readout frame.

charged current neutrino interaction with cosmics
Our group at NMSU has built a cosmic ray muon detector to measure the cosmic ray rate.

It is currently running in the Liquid Argon Test Facility (LArTF), where MicroBooNE will be located during its run.

The goal of the detector is to validate Monte Carlo studies of cosmic rays in MicroBooNE.
The detector consists of 9 plastic scintillator bars stacked 3 x 3. It measures 20cm x 24cm x 40cm. Each scintillator is connected to one of nine 2” photomultiplier tubes (PMTs).
The data acquisition was done using a combination of NIM and CAMAC electronics. A NIM discriminator and logic unit were used to create a gate and trigger for a CAMAC analog to digital converter (ADC). We required a coincidence of two or more detectors with a signal height greater than 30 mV. The PMT signals are sent to the CAMAC ADC to be converted and recorded into the computer.
Pulse height spectra of the incoming signals from the nine detectors.

The pulse height peaks correspond to the energy deposited by vertical muons traveling straight through the detectors.
CRY and Geant4 Simulation

- Monte Carlo simulation of our detector in LArTF

- Geometry and tracking was done using Geant4
  http://geant4.cern.ch/

- Cosmic rays were generated using the Cosmic-Ray Shower Generator (CRY)
  http://nuclear.llnl.gov/simulation/main.html
Energy spectra of the incoming signals from the nine detectors

Katherine Woodruff, et al.
New Mexico State University
Comparison of Results

Energy Spectra

- Energies can be determined by comparing the peak locations of our detector and simulation.
- We can then rescale the pulse height spectra into units of energy.

Histogram of Detector01 pulse heights

Same histogram rescaled to units of energy (MeV)
Comparison of Results

Rates

Now that our detector data is on the same scale as our simulation data, we can compare the rates using the same threshold (5 MeV)

<table>
<thead>
<tr>
<th></th>
<th>Total Rate</th>
<th>Vertical Rate</th>
<th>Diagonal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Rate ($s^{-1}$)</td>
<td>15.15</td>
<td>2.00</td>
<td>0.14</td>
</tr>
<tr>
<td>Simulation Rate ($s^{-1}$)</td>
<td>11.10</td>
<td>1.44</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- Vertical Rate
- Diagonal Rate
Conclusions and Further Work

- A combination of measurements in LArTF and a Monte Carlo simulation will further help our understanding of the cosmic ray rate in MicroBooNE.

- We are currently conducting a more detailed analysis of the angle dependence of the rate.

Thank you!