

Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: perspectives from MicroBooNE

Tia Miceli

New Mexico State University TAUP 2013, Asilomar CA

12 September 2013

Work with Prof. Vassili Papavassiliou, Prof. Stephen Pate, and Katherine Woodruff of NMSU

NM STATE MicroBooNE

- See Jonathan Asaadi's talk for more.
- Liquid Argon Time Projection Chamber
 - excellent tracking, calorimetry, and particle ID → low momentum transfer squared (Q²)
- Measure neutrinos from Fermilab's Booster and NuMI neutrino beams.

 I will show you an interesting measurement we will make with MicroBooNE.

TPC inside LAr cryostat

3 planes of wires

- Why nucleon spin is important for dark matter searches
- Introduction to form factors
- Current global fits
- MicroBooNE as a strange spin detector
- Battle of the Backgrounds

Dark Matter Searches

Dark Matter may be dependent or independent of spin.

Apologies if your favorite curve is not here!

- You may not know, but spin-dependent dark matter (SD-DM) cross-sections suffer from imprecise knowledge of the spin structure of the proton.
 - Specifically, the component of nucleon spin arising from the strange-quark sea, Δs , is not well known.

Nucleon Spin

- Inclusive polarized electron deep inelastic scattering (DIS) experiments consistently indicate $\Delta s < 0$.
 - EMC, SMC, HERMES ($\Delta s = -0.085 \pm 0.017$), COMPASS, SLAC experiments Phys. Rev. D75 (2007) 012007
- Semi-inclusive polarized DIS finds Δs is consistent with 0.
 - HERMES (Δ s = +0.028 ± 0.034) and COMPASS (-0.01 ± 0.01), precision limited. Phys. Rev. D71 (2005) 012003 Phys. Lett. B 693 (2010) 227
- Neutrino scattering experiments are inconclusive so far.
 - BNL-E734 and MiniBooNE. Need to measure lower Q².

Phys.Rev. D35 (1987) 785 Phys. Rev. C 48, 761–765 (1993) Nucl.Phys. A651 (1999) 277-286 Phys. Rev. D82 (2010) 092005

 \square A range, -0.15 < Δ s < 0, should be considered when using Δ s as input to calculations.

Spin-Dependent Cross Sections

- Assume the Constrained Minimal Super Symmetric Model (CMSSM)
 - consider neutralino cross section.
- For direct SD-DM searches:
 - $\sigma_{\chi-N}$ can vary from prediction by a factor of 2!
 - If Δs ≈ 0, targets with N_n=odd and N_p=even are strongly preferred
 e.g. ²⁹Si ⁷³Ge
 - If Δs = -0.12, targets with N_n=even and N_p=odd are somewhat better
 e.g. ⁷Li, ¹⁹F, ²³Na
- Limits on spin dependent DM may shift by a factor of 2 depending on Δs assumptions.

V. Papavassiliou MicroBooNE-DocDB2810-v1
DarkSUSY: http://www.physto.se/~edsjo/darksusy/
P. Gondolo et al, JCAP 0407 (2004) 008 [astro-ph/0406204]
Tia Miceli 7

- Why nucleon spin is important for dark matter searches
- Introduction to form factors
- Current global fits
- MicroBooNE as a strange spin detector
- Battle of the Backgrounds

What is a Nucleon Form Factor?

When an electron or neutrino elastically scatters with a nucleon, it see more than just a simple point particle.

VS.

The structure within the nucleon modifies the elastic cross section.

This modification is parameterized by form factors.

Neutral Weak Form Factors

Neutral weak current

Vector form factors are analogous to electromagnetic form factors, but with weak couplings.

$$J_{\mu}^{NC} = \sqrt{\left|\mathbf{J}_{\mu}^{NC}\right|} p \rangle_{N} = \overline{u} \left(p'\right) \left[\gamma_{\mu} F_{1}^{Z,N}(q^{2}) + i \frac{\sigma_{\mu\nu} q^{\nu}}{2M} F_{2}^{Z,N}(q^{2})\right] + \gamma_{\mu} \gamma_{5} G_{A}^{Z,N}(q^{2}) + \frac{q_{\mu}}{M} \gamma_{5} G_{P}^{Z,N}(q^{2})\right] u(p)$$

Axial form factor parameterizes amount of parity violation

(Pseudo-scalar form factor, doesn't contribute, so we ignore it.)

Flavor Decomposition of Form Factors

Write nucleon form factors in terms of contributions from individual quarks, with appropriate couplings.

 \square Axial form factor (function of Q^2):

well measured from chargedcurrent neutrino reactions and DIS

$$G_A^{Z,p} = \frac{1}{2} \left(-G_A^u + G_A^d + G_A^s \right)$$

MicroBooNE will measure this!

□ Strange component to the nucleon spin: $G^{s}_{A}(Q^{2} \rightarrow 0) \equiv \Delta s$.

- Why nucleon spin is important for dark matter searches
- Introduction to form factors
- Current global fits
- MicroBooNE as a strange spin detector
- Battle of the Backgrounds

Current Fits & 70% confidence band

- 48 experiments of elastic and quasielastic electroweak scattering data compiled by S. Pate and D. Trujillo arXiv:1308.5694.
- □ In each bin of Q^2 , the data is simultaneously fit.
- □ G_A^S uncertainty widens as $Q^2 \rightarrow 0$
 - MicroBooNE can make a big contribution at low Q² like BNL-E734 did for higher Q².

- G0 (forward ep) + E734 (vp and $\bar{v}p$)
- O HAPPEx (forward ep) + E734 (vp and $\bar{v}p$)
 Pate, Papavassiliou & McKee, PRC 78 (2008) 015207
- PVA4 (forward and backward *ep*)
 Baunack et al., PRL 102 (2009) 151803
- ▼ G0 (forward and backward ep, and backward ed)
 D. Androic et al., PRL 104 (2010) 012001
- HAPPEx (forward ep and e^4 He) + G0 (forward ep) + SAMPLE (backward ep and ed) + PVA4 (forward ep) 7 near $Q^2 = 0.1 \text{ GeV}^2$
 - Liu, McKeown & Ramsey-Musolf, PRC 76 (2007) 025202
- ▲ HAPPEx (forward ep) + G0 (forward and backward ep) at $Q^2 = 0.62 \text{ GeV}^2$

Ahmed et al., PRL 108 (2012) 102001

- Why nucleon spin is important for dark matter searches
- Introduction to form factors
- Current global fits
- MicroBooNE as a strange spin detector
- Battle of the Backgrounds

Detecting Strange Spin

□ Ratio of neutral current / charged current cross sections $(\sigma_{NC}/\sigma_{CC})$ is sensitive to Δs .

At MiniBooNE:

- Measure ratio $\sigma(vp \rightarrow vp)/\sigma(vN \rightarrow \mu N)$
- See which Δs
 prediction matches
 best with the data.

□ At MicroBooNE:

 Follow similar procedure, but MicroBooNE will do better (lower Q², and improved particle ID).

MiniBooNE: Phys. Rev. D 82, 092005 (2010)

NM STATE Finding Events

- Example events in ArgoNeuT.
- For MicroBooNE, a
 conservative Q² is considered:
 - minimum track extends over 4 collection wires
 - proton kinetic energy, T_p=40 MeV
 - $Q^2 = 0.08 \text{ GeV}^2$
- We can go even lower in Q² if shortest track extends only over 3 wires.

Simple Simulation

- 50k v-Ar events generated using Nuance v3
 - 2x10²⁰ protons on target ~1 year of running
 - 4,343 NC off of n
 - 2,760 NC off of p
 - 22,209 CC off of n
- **Booster Neutrino Beam**
 - <E_v>~1 GeV

With special thanks to Josh Spitz (Yale) for producing the event N-tuple.

NM STATE MC v-Ar Events

- Apparent vs. True Q²
 - only nuclear effects (Fermi motion) are considered in Nuance v3

Detecting Strange Spin

 $\neg \sigma_{NC}/\sigma_{CC} = \sigma(vp \rightarrow vp)/\sigma(vn \rightarrow \mu^{-}p) = N_p/N_{p+\mu}$ (careful of backgrounds!)

- Some nuclear, detector, and flux effects are common to both NC and CC, so they cancel by taking a ratio.
 - Example: Above, fermi motion does not affect ratio.

Axial FF Fit Uncertainty

When the simulated MicroBooNE data is folded into the fit (right), the uncertainty in G^S_A can improve by an order of magnitude.

- Why nucleon spin is important for dark matter searches
- Introduction to form factors
- Current global fits
- MicroBooNE as a strange spin detector
- Battle of the Backgrounds

Battle of the Backgrounds

- Many backgrounds for NC and CC will be under study soon.
- Most insidious are the NC backgrounds: neutrons!
 - from upstream scattering in the dirt and cosmic rays

High energy neutron background

Anpeam ---

Battle of the Backgrounds

- Many backgrounds for NC and CC will be under study soon.
- Most insidious are the NC backgrounds: neutrons!
 - from upstream scattering in the dirt and cosmic rays

Low energy neutron background

(From all directions! It bounces around!)

Ah peaw.

Low Energy Neutron Background

We will study NC events in various annuli within the detector to define an acceptable fiducial volume. (Datadriven cut and estimate.)

High Energy Neutron Background (1/3)

icroboone

We will study the NC event rate as a function of length along the detector to estimate the high energy neutron background. (Data-driven cut and estimate.)

High Energy Neutron Background (2/3)

- If high energy neutron backgrounds are still big
 - Auxiliary detectors may be useful.
 - These are currently under consideration for upgrades.
- Charged scatterers are correlated with neutral production
 - Can veto those events with an auxiliary scintillator wall.

High Energy Neutron Background (3/3)

- If high energy neutron backgrounds are still big
 - Auxiliary detectors may be useful.
 - These are currently under consideration for upgrades.
- Charged scatterers are correlated with neutral production
 - Can veto those events with an auxiliary scintillator wall.
- Measure the neutron flux directly in detector hall.
 - Only measure if n is captured.
 - Can't leave detector there.

NM STATE Conclusions

- MicroBooNE will measure the NC/CC cross section ratio at Q² lower than 0.08 GeV².
- \blacksquare This cross section ratio will constrain the contribution of the strange-sea quarks to the spin of the nucleon, Δs .
- Δs is an important ingredient that needs to be understood to design good experiments for spin-dependent dark matter.

One's measuring device needs to be properly used and calibrated to get correct data!

Thank you!

NM STATE Supplementary Slides

NM STATE CMSSM parameters

- From Nazila Mahmoudi's webpage
- The general MSSM has more than 100 free parameters which makes any systematic study impossible.
- One way to reduce this degree of arbitrariness is to assume universality assumptions at the Grand Unification (GUT) scale.
- A most commonly used example of such model is the CMSSM (or mSUGRA) which assumes at the GUT scale that:
 - all the scalar particles have the same mass: called m0
 - all the gauginos (partners of gauge bosons) have the same mass: called m1/2
 - all the trilinear couplings of the particles are the same: called A0
- \blacksquare and the last free parameter is tan β which is the ratio of the vacuum expectation values of the Higgs doublets.
- \Box The sign of the higgsino mass term μ is also not fixed and can be either positive or negative.

NCQE Cross Section

$$\frac{d\sigma}{dQ^{2}}(vp \rightarrow vp) = \frac{G_F^2}{2\pi} \frac{Q^2}{E_v^2} \left(A \pm BW + CW^2 \right) - \overline{v}$$

$$W = 4(E_{v}/M_{p} - \tau) \qquad \tau = Q^{2}/4M_{p}^{2}$$

$$A = \frac{1}{4} \left[(G_{A}^{Z})^{2} (1 + \tau) - ((F_{1}^{Z})^{2} - \tau (F_{2}^{Z})^{2}) (1 - \tau) + 4\tau F_{1}^{Z} F_{2}^{Z} \right]$$

$$B = -\frac{1}{4} G_{A}^{Z} (F_{1}^{Z} + F_{2}^{Z})$$

$$C = \frac{1}{64\tau} \left[(G_{A}^{Z})^{2} + (F_{1}^{Z})^{2} + \tau (F_{2}^{Z})^{2} \right]$$

NM STATE Motivation

- MicroBooNE will measure the strange axial form factor of the nucleon.
 - Only previous neutrino scattering experiment to say anything competitive about this form factor was BNL's E734 in 1987.
 - MicroBooNE will improve our knowledge of the nucleon spin structure.
- Such nucleons are the target for spin dependent dark matter searches, and this uncertainty is buried within limit setting programs.
- Assuming the CMSSM.
 - Refinement of the spin structure reduces the uncertainties on the spin dependent dark matter cross section.
 - Insight into what type of material to use for spin dependent dark matter experiments.

Electromagnetic Form Factors

Electromagnetic current

$$J_{\mu}^{EM} = \sqrt{p' |\mathbf{J}_{\mu}^{EM}| p}_{N} = \overline{u}(p') \left[\gamma_{\mu} F_{1}^{\gamma, N}(q^{2}) + i \frac{\sigma_{\mu\nu} q^{\nu}}{2M} F_{2}^{\gamma, N}(q^{2}) \right] u(p)}$$

for two nucleon states of momentum p and p'. $q^2 = (p' - p)^2$

□ Pauli form factor: $F_2^{\gamma,N}$

Electromagnetic Form Factors

□ Commonly, we re-write $F_1^{\gamma,N}$ and $F_2^{\gamma,N}$ as a linear combination in the Sach's formulation:

$$G_E^{p,n} = F_1^{p,n} - \tau F_2^{p,n}$$

$$G_M^{p,n} = F_1^{p,n} + F_2^{p,n}$$

$$\tau = Q^2 / 4M^2$$

Electric FF

Magnetic FF

These are well measured over many years at many laboratories.

Interpreting Strange Form Factors

- □ G_FS
 - s and s have opposite electric charge
 - sensitive to "s-\overline{s}"
 - if s and \overline{s} have same spatial distribution: $G_E^s = 0$
- \Box G_M^s
 - s and s have opposite electric charge, so opposite currents
 - sensitive to "s-\overline{s}"
 - if s and \overline{s} have same current distribution: $G_M^s = 0$
- \Box G_A^S
 - s and s have same axial coupling!
 - sensitive to "s+\overline{s}"
 - even if s and \overline{s} have same distributions: can have $G_A^s \neq 0$
 - Strange quark contribution to nucleon spin: $\Delta S = G_A^s(Q^2=0)$

NM STATE Current Data

- Elastic and Quasi-elastic electroweak scattering data were compiled by S. Pate and D.Trujillo arXiv:1308.5694
- □ In each bin of Q², the data can be simultaneously fit

Dark Matter Uncertainties

- From "Hadronic uncertainties in the elastic scattering of supersymmetric dark matter" Phys. Rev. D 77 (2008) J. Ellis, K Olive, C. Savage.
 - For models of constrained minimal supersymmetry (CMSSM), "Uncertainties in the strange spin contribution $\Delta s...$ induce 10-15% uncertainties in $\sigma_{\chi N,SD}...$ " (the spin dependent dark matter-nucleon cross section)
 - O MicroBooNE will improve this!
 - "The large uncertainty in $\sigma_{\chi n,SD}/\sigma_{\chi p,SD}$ induced by Δs for a given model is unfortunate since this ratio may be one of the easiest to determine experimentally."
 - O MicroBooNE will measure this!

Parameters for Fit

$$G_E^s = \rho_s \tau \qquad \rho_s \equiv \frac{dG_E^s}{d\tau} \qquad \tau = \frac{Q^2}{4M_N^2}$$

$$G_M^s = \mu_s \qquad \sigma_M^s = \mu_s$$

$$G_A^s = \frac{\Delta S + S_A Q^2}{\left(1 + Q^2 / \Lambda_A^2\right)^2}$$

- Parameters of fit are
 - strangeness radius, ρ_s
 - strangeness contribution to the magnetic moment, μ_s
 - strangeness contribution to the spin, ΔS
 - dipole form parameters, Λ_A and S_A