INTRODUCTION TO SCINTILLATION LIGHT IN LIQUID ARGON

Ben Jones, MIT

The Basics:

Light yield ~ few 10,000's of photons per MeV (dependences on E field, particle type and purity)

Wavelength of emission is 128nm

Light with two characteristic time constants:

- fast component, 6 ns
- slow component,1500 ns

Argon is highly transparent to its own scintillation light.

Mechanisms of Scintillation in LAr

In liquid argon, there are two important scintillation mechanisms:

Mechanisms of Scintillation in LAr

1: "Self-trapped exciton luminescence"

Mechanisms of Scintillation in LAr

Recombination step involves an electron cloud around the track core

- -> E-Field dependent scintillation yield
- -> dE/dx dependent scintillation yield
- -> Charge and light anti-correlation

Self-trapped exciton luminescence

Something to note:

Both pathways rely on the formation of excimers

Ground state of 2 argon atoms is unbound

Excimer states are Rydberg states : Ar²⁺ core with a bound electron

There are two low lying excited states:

A singlet state	1Σu+
A triplet state	3Σu+

Singlet and triplet refer to how the spin of the electron and argon dimer couple in the rydberg "atom".

All scintillation light comes from excimer decay

Why are LAr / LXe transparent to their own scintillation light?

128 nm photon emission

(cm¹) ENERGY

How about the reverse process (absorption?)

Why are LAr / LXe transparent to their own scintillation light?

Typical separation in the liquid phase ground state (~4A, naively from liquid density)

128 nm photon emission

Impurities in LAr

- Ultra-pure argon is very transparent. Dirty argon is not.
- All liquid argon will have trace impurities at some level.
- Some impurities are important for drift, some for light, some for both.
- Impurities which are difficult / expensive to remove are those which are
 - 1) present in the raw gas
 - 2) similar in boiling point to LAr
 - 3) not removable by regenerable filtering techniques
- The composition of impurities depends on the source of the raw gas.

An argon isolation plant

- Industrial argon for large neutrino detectors
- Large quantity required at low cost
- Raw gas : air
- Produced by industrial distillation and then purification with molecular sieves and filters
- Contaminants include *nitrogen* (ppm), oxygen and water (<ppb)

Flare filter + sieve system (FNAL)

- Underground argon for dark matter detectors
- Low radioactivity from ³⁹Ar required
- Raw gas : CO₂ from underground wells
- Produced by VPSA, cryogenic distillation and filtering
- Contaminants include helium, *methane*, O_2 , CO_2 H₂O

Underground argon distillation column (FNAL)

Absorption by Nitrogen

Shown at last years LArTPC workshop – absorption due to dissolved nitrogen at the ppm level:

BJPJ et al, 2013 JINST 8 P07011

Monitor light yield from 2 sources as nitrogen is injected

Expected attenuation length due to N2 at 2ppm (MicroBooNE cryo spec) is ~30m.

Absorption by Methane

New for this year's meeting – the effects of methane have also been studied in both visible and UV:

Absorption is accompanied by no visible re-emission (reported in gas phase)

<10ppb methane contamination is required for modern DM experiments.

Methane Concentration (ppb)

Self-trapped exciton luminescence

weighted between the two processes

The fate of the excimer states

The singlet decays into two argon atoms and a photon, in 6ns

The triplet decays in ~1500 ns

Some disagreement in the literature as to whether this decay proceeds via the singlet, or directly to the ground state

Either way, time constant much longer than the singlet.

Time Constants of LAr Scintillation

Summing up many pulses to get an average waveform, you can measure time constants

Fig. 4. Typical (single) waveform recorded during the N_2 test. Event with large energy deposition from cosmic muon (mip) crossing the LAr cell.

Quenching of Scintillation Light

Scintillation process

Competing Excimer Dissociation Process

Rate dependent on the density of excimers and density of impurity

Quenching by Nitrogen

First measured by WArP: Acciarri et al 2010 JINST 5 P06003

Quenching shortens long time constant and reduces total scintillation yield. significant above $\sim 2 \text{ ppm N}_2$

In MicroBooNE & LBNE/F, quenching and absorption may both be observable, but likely not problematic.

Quenching by Methane

 We observed quenching by methane, but at concentrations much above where absorption is problematic

BJPJ et al, 2013 JINST 8 P12015

Excitation Transfer to Xenon

Excitation can also be transferred to a dopant which then decays with a photon.

Eg xenon : first studied by ICARUS, and more recently for dark matter detection (left)

175 nm rather than 128 nm emission gives a moderate improvement to light collection capability (depends on WLS coating)

Also brings late light to shorter timescales

From **JINST 9 (2014) P06013** Wahl et al

Back to pure argon :

An open mystery – the Third Component

- WArP, ArDM, and BoVST, all see some activity in the "intermediate time" region of a deconvolved PMT pulse for pure argon.
- Interpretation of "intermediate component" not presently clear.
- Instrumental effect or scintillation physics?

- Different measurement methods / experiments do not presently agree on the value of the intermediate time constant or size of the component.
- A potentially interesting piece of liquid argon microphysics. What wavelength is it? Dependence on E-field? Purity? dEdx? Other??
- Let's understand it by this session next year!

Some new and notable papers about (or relevant to) LAr scintillation physics since LArTPC2013

- Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon *arXiv:1406.4825*
- Observation of the dependence on drift field of scintillation from nuclear recoils in liquid argon *Phys.Rev. D88 (2013) 9, 092006*
- A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC JINST 8 (2013) P08005
- Performance of liquid argon neutrino detectors with enhanced sensitivity to scintillation light *arXiv:1405.0848*

Summary

- I discussed the mechanisms of scintillation in liquid argon
- Small concentrations of contaminants can have a detrimental impact on scintillation light
- Methane and nitrogen are problems for underground and atmospheric argon respectively, and both have been studied for absorption and quenching effects.
- There is mounting evidence of an intermediate time constant of unknown origin, which can hopefully be understood soon!

Thank you for your attention.