A study of electron recombination using highly ionizing particles in ArgoNeuT

Bruce Baller
Fermilab
ArgoNeut Collaboration

F. Cavanna
University of L’Aquila

A. Eriditato, S. Haug, B. Rossi, M. Weber
University of Bern

B. Baller, C. James, S. Pordes, G. Rameika, B. Rebel
Fermi National Accelerator Laboratory

M. Antonello, O. Palamara
Gran Sasso National Laboratory

T. Bolton, S. Farooq, G. Horton-Smith, D. McKee
Kansas State University

C. Bromberg, D. Edmunds, P. Laurens, B. Page
Michigan State University

J. Asaadi, Mitch Soderberg
Syracuse University

K. Lang, R. Mehdiyev
University of Texas – Austin

C. Adams, C. Anderson, E. Church, B. Fleming, R. Guenette, S. Linden, K. Partyka, J. Spitz, A. Szelic
Yale University

Contributing Author

M. Wojcik
Lodz University of Technology
Outline

- Brief survey of recombination theory
- LAr – ideal liquid vs real liquid
- Application of Birks and Box model equations
 - Introduce a modification to the Box model
- Recombination simulation
 - Focus on angular dependence
- ArgoNeuT LAr TPC in the NuMI neutrino beam
 - Track and calorimetric reconstruction
- A novel(?) stopping particle ID scheme for selecting protons and deuterons
- Angular dependence – protons
- Extend to higher stopping power - deuterons
Recombination

- Geminate: ~0.1%
- Bulk: Electron lifetime
- No angular dependence
- Columnar: Angular Dependence
- E field

No angular dependence
\[Y_3(X) = \frac{1}{1 + \frac{\alpha N_0}{8\pi D} \sqrt{\frac{\pi}{z'}} S(z')} \], \quad z' = \frac{b^2 u^2 X^4 \sin^2 \varphi}{2D^2}.

Birks model (1951)

\[Y_3(X) = \text{recombination factor } R \]

\[\rightarrow \text{fraction of electrons that escape vs E field strength } X \]

Assumptions

- Recombination \(\sim\) charge density
- No Coulomb interactions
- Ion mobility = electron mobility
- Electrons & ions have the same Gaussian distribution

\[S(z') = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-s} ds}{\sqrt{s(1+s/z')}} \]
Liquid Argon
A Special Medium

- High electron mobility
- Electron MFP = 20 nm
- Onsager radius = 130 nm ($E_{\text{Coulomb}} = E_{\text{thermal}}$)
- No vibration levels available \rightarrow ~1 nsec thermalization time
- Electrons in Coulomb field or strong external field, \mathcal{E}, are not in thermal equilibrium \rightarrow diffusion equations not fully applicable

Box Model
Ignore electron diffusion and ion mobility in LAr

$$\mathcal{R}_{\text{Box}} = \frac{1}{\xi} \ln(\alpha + \xi),$$

$$\xi = k_{\text{Box}} N_0 / 4 a^2 \mu \mathcal{E}$$

$\mathcal{E} = E$ field

Thomas & Imel, Phys Rev A 36 (1987) 614

$\alpha = 1$ in the canonical model.
We allow it to vary in the recombination fits.

We set $\xi = \beta (dE/dx)$ and fit β in the recombination fits.
Liquid Argon
As a Real Detector Medium

Measurement

Birks form

\[
\mathcal{R}_{\text{ICARUS}} = \frac{A_B}{1 + k_B \cdot (dE/dx)/E}
\]

\[
A_B = 0.800 \pm 0.003 \neq 1
\]

\[
k_B = 0.0486 \pm 0.0006 \text{ kV/cm} \text{ (g/cm}^2\text{/MeV)}
\]

Impurities

Ions can attach to water molecules, screening the Coulomb field.

Debye length \(\lambda_D = \text{distance at which screened potential } E = E_{\text{thermal}} \)

\(\lambda_D = 400 \text{ – } 600 \text{ nm in ArgoNeut data} \)

Not negligible?

Measurement

Theory \(\mathcal{R} \to 0 \text{ as } E \to 0 \)

Heavy ions: \(\mathcal{R} = 0.003 \)

Electrons: \(\mathcal{R} = 0.35 \)

\(\delta\)-rays
Application of Birks and Box forms to reconstruction

Inverse Birks equation is < 0 at large dQ/dx

Inverse Box equation is well behaved

But Box model fails to match data at low dE/dx

Solution: Let $\alpha < 1$

“Modified Box Model” ala ICARUS $A_B = 0.8$

Example with $\alpha = 0.93$

$\beta = 0.32$

$$dE/dx = \frac{dQ/dx}{A_B/W_{ion} - k_B \cdot (dQ/dx)/\beta}$$

$$dE/dx = (\exp(\beta W_{ion} \cdot (dQ/dx)) - \alpha)/\beta$$
Recombination Simulation

E field

Stopping proton: \(\frac{dE}{dx} = 24 \text{ MeV/cm} \Rightarrow r_k = 10 \text{ nm} \)

MIP: \(\frac{dE}{dx} = 1.7 \text{ MeV/cm} \Rightarrow r_k = 50 \text{ nm} \)

Initial conditions:
\(r_0 = 0.5 \text{ nm}, \ E_{k0} = 5 \text{ eV} \)

After thermalization:
\(\langle r_0 \rangle \sim 2500 \text{ nm}, \ \langle E_{k0} \rangle \sim 0.01 \text{ eV} \)

Simulation includes motion due to (periodic) Coulomb field, external E field and atomic collisions, escape and recombination criteria

\[\text{Sim with } \delta \text{-rays ICARUS} \]
Modify simulation to allow non-perpendicular E field

Simulation runs for $r_k = 10, 20, 30, 40, 50$ nm and $\phi = 40^\circ, 50^\circ, 60^\circ, 80^\circ$

Ratios of escape probability, R, vs dE/dx →

Simulation (data points) R_{ICARUS} with $E \rightarrow E \sin \phi$ (curves)

Significant angular dependence expected from theory and simulation
ArgoNeuT

C. Anderson, 2012 JINST 7 P10019

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryostat Volume</td>
<td>500 Liters</td>
</tr>
<tr>
<td>TPC Volume</td>
<td>175 Liters</td>
</tr>
<tr>
<td># Electronic Channels</td>
<td>480</td>
</tr>
<tr>
<td>Electronics Style (Temp.)</td>
<td>JFET (293 K)</td>
</tr>
<tr>
<td>Wire Pitch (Plane Separation)</td>
<td>4 mm (4 mm)</td>
</tr>
<tr>
<td>Electric Field</td>
<td>481 V/cm</td>
</tr>
<tr>
<td>Max. Drift Length (Time)</td>
<td>0.5 m (330 μs)</td>
</tr>
<tr>
<td>Wire Properties</td>
<td>0.15mm diameter BeCu</td>
</tr>
</tbody>
</table>
Bethe-Bloch eqn has power law dependence with residual range (R) near the stopping point.

\[\frac{dE}{dx}_{\text{hyp}} = A R^b \]

\[T_{\text{range}} = \frac{A}{b+1} R^{b+1} \]

<table>
<thead>
<tr>
<th>Particle</th>
<th>(A)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pion</td>
<td>7.9</td>
<td>-0.37</td>
</tr>
<tr>
<td>kaon</td>
<td>13.5</td>
<td>-0.41</td>
</tr>
<tr>
<td>proton</td>
<td>17</td>
<td>-0.42</td>
</tr>
<tr>
<td>deuteron</td>
<td>25</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

Note the weak dependence on \(b \)

\(T_{\text{range}} \) (MeV), \(R \) (cm)
1) Reconstruct 3D tracks = cluster of 3D space points each with a measurement of charge Q deposited using the area of a Gaussian fit (collection plane)

2) Find dQ/dx using angle corrected distance between space points

3) Correct for electron lifetime

4) Find $(dE/dx)_{\text{calo}}$ using Birks or Box equation

5) Sum up to find kinetic energy deposited = T_{calo}

6) Find T_{range} using track length assuming a proton hypothesis

7) Eliminate lightly ionizing ptcls by requiring $T_{\text{calo}} > 0.5 \times T_{\text{range}}$
Algorithm

Set $b = \text{constant} = 0.42$

Find $A_i = \frac{dE}{dx}_{\text{calo}} \times R^{0.42}$ for each space point i on a track

Define $\text{PIDA} = \langle A_i \rangle = \text{average value for the track}$

Histogram PIDA and look for bumps \rightarrow

Requirements

Protons: $14 < \text{PIDA} < 21$
Deuterons: $25 < \text{PIDA} < 33$

30x more protons than expected from NC ν interactions \rightarrow neutrons
2900 proton candidates
170 deuteron candidates

\[(dE/dx)_{\text{deuteron}} = 25 \cdot R^{-0.43}\]

\[(dE/dx)_{\text{proton}} = 17 \cdot R^{-0.42}\]
ArgoNeut data
Proton candidates
$50 \text{ MeV} < T_{\text{range}} < 250 \text{ MeV}$

Range (cm)

Events

40° 50° 60° 80°
Angular Dependence
Protons

ArgoNeut data

No recombination model assumptions required to make this plot

\(\frac{dQ}{dx} \) from Bethe-Bloch using R
Angular Dependence

Protons

Significantly weaker than expected from theory and simulation

Debye-like screening effect?

ArgoNeut data

\(\times 10^3 \)

\(dQ/dx \) (e/cm)

\((dE/dx)_{hyp} \) (MeV/cm)

\(\phi = 80^\circ \)

\(\phi = 60^\circ \)

\(\phi = 50^\circ \)

\(\phi = 40^\circ \)
Recombination Fits

\[\frac{dQ}{dx} \text{ vs } \frac{dE}{dx} (\langle \phi \rangle = 80^\circ) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birks</td>
<td>(A)</td>
<td>0.7928 ± 0.01812</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k)</td>
<td>0.0492 ± 0.002441</td>
<td></td>
</tr>
<tr>
<td>Modified Box</td>
<td>(\alpha)</td>
<td>0.9095 ± 0.03286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\beta)</td>
<td>0.3019 ± 0.005493</td>
<td></td>
</tr>
</tbody>
</table>

\[\chi^2 / \text{ndf} = 5.82 / 18 \]

Vertical bars include 2% systematic error
Horizontal bars \(\delta R = 1 \text{ mm} \)

\[\frac{dQ}{dx} \text{ vs } \frac{dE}{dx} (\langle \phi \rangle = 40^\circ) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birks</td>
<td>(A)</td>
<td>0.8748 ± 0.0247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k)</td>
<td>0.06554 ± 0.003584</td>
<td></td>
</tr>
<tr>
<td>Modified Box</td>
<td>(\alpha)</td>
<td>1.062 ± 0.05178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\beta)</td>
<td>0.3462 ± 0.00695</td>
<td></td>
</tr>
</tbody>
</table>

\[\chi^2 / \text{ndf} = 3.757 / 16 \]

ArgoNeut data

Data – open circles
Birks fit – red curve
Modified Box fit – blue curve
Fit Summary Protons

<table>
<thead>
<tr>
<th>Angle Bin</th>
<th>Angle Bin Range</th>
<th>Box α</th>
<th>Box β (MeV/cm)$^{-1}$</th>
<th>Birks A_{Argo}</th>
<th>Birks k_{Argo} (kV/cm)(g/cm2)/MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°</td>
<td>70° - 90°</td>
<td>0.91 ± 0.03</td>
<td>0.302 ± 0.005</td>
<td>0.793 ± 0.018</td>
<td>0.049 ± 0.002</td>
</tr>
<tr>
<td>60°</td>
<td>55° - 70°</td>
<td>0.92 ± 0.04</td>
<td>0.317 ± 0.006</td>
<td>0.794 ± 0.019</td>
<td>0.052 ± 0.003</td>
</tr>
<tr>
<td>50°</td>
<td>47° - 55°</td>
<td>0.90 ± 0.04</td>
<td>0.327 ± 0.007</td>
<td>0.791 ± 0.020</td>
<td>0.053 ± 0.003</td>
</tr>
<tr>
<td>40°</td>
<td>20° - 47°</td>
<td>1.06 ± 0.05</td>
<td>0.346 ± 0.007</td>
<td>0.875 ± 0.025</td>
<td>0.066 ± 0.004</td>
</tr>
</tbody>
</table>

$\alpha \sim$ independent of angle

$<\alpha> = 0.93 \pm 0.02$

Excellent agreement with ICARUS in the 80° bin

Trend line

ANT 2013 Baller
Deuterons

\[(dE/dx)_{hyp} = 25 \, R^{-0.43} \]

Extends the range of the recombination fit to 35 MeV/cm
Summary

• Introduced a modified Box model
 o Excellent agreement with data and Birks model
 o Obviates the poor behavior of the Birks model at low ionization

• Significant recombination angular dependence expected from columnar theory and simulation
 o ~25% loss of charge collected at φ ~ 40° and dE/dx ~ 24 MeV/cm compared to the same track at φ ~ 80°

• Introduced a PID scheme using the power-law behavior of stopping particle stopping power

• Charge loss is 5% - 10% in the proton sample at high dE/dx and small angle

• Extend the range of validity to 35 MeV/cm using a small sample of deuterons
Backup Slides
Deuterons or Protons?

Lower PIDA range: 23 < PIDA < 27
Contaminated by protons in the Gaussian tail
See slide 14

Deuteron: \((dE/dx)_{hyp} = 25 \cdot R^{-0.43}\)
Are the deuteron candidates really protons?

Use the (incorrect) proton hypothesis with the deuteron sample.
Estimating the Stopping Point Position

- The stopping point is usually assumed to be dx/2, where dx is the distance between the last two space points.
- Use the pattern of dE/dx in the last 5 space points to estimate the stopping point in the last wire cell.
- Step a distance δR in the last cell (1 < δR < 10 mm) in 1 mm increments.
- For each step, calculate:
 - dQ/δR for the stopping point,
 - Recombination correction $\rightarrow (dE/δR)_\text{calo}$ for the stopping point,
 - $(dE/dx)_{\text{hyp}}$ for next 4 points using residual range = δR + n dx (n = 1, 2, 3, 4).
- Find rms difference between $(dE/dx)_{\text{hyp}}$ and $(dE/dx)_{\text{calo}}$ for all points.
- Use the Δ value with the smallest rms.
Estimating the Stopping Point Position

Assume the track stops halfway in the last cell

\[\langle \frac{dE}{dx} \rangle \sim 45 \pm 45 \text{ MeV/cm} \]

Data
Monte Carlo

After fitting to the stopping point

\[\langle \frac{dE}{dx} \rangle \sim 25 \pm 13 \text{ MeV/cm} \]

Data
Monte Carlo
Estimating the Stopping Point Position

- Stopping point error from Monte Carlo ~ 1 mm
- \((dE/dx)_{\text{calo}}\) from the last point is not included in the recombination fits
- Stopping point fit reduces the \((dE/dx)_{\text{hyp}}\) error propagated from the equation on slide 12
 - Horizontal error bars on slide 18