The MicroBooNE Experiment

Ryan Grosso University of Cincinnati On Behalf of The MicroBooNE Collaboration

MicroBooNE

- Liquid Argon (LAr) Time-Projection Chamber (TPC) with 87 ton active volume.
- Stationed at Fermilab in the Booster Neutrino beam
- Major goals of MicroBooNE:
 - Investigate MiniBooNE's low energy excess
 - Wide range of cross section measurements of neutrinos on Ar
 - R&D for future large LAr detectors

MiniBooNE Low Energy Excess

The MiniBooNE Detector

- Short baseline neutrino oscillation physics
- Mineral oil Cherenkov detector
- Collected data in the Booster Beamline at Fermilab (2001-2012)

The MiniBooNE Results:

- Unexpected >3σ (statistical & systematic, combined) excess
- Excess is at lower energies(< 0.6 GeV)
- Events were electron/photon like
- Excess in neutrino and anti-neutrino interactions

MiniBooNE Detector

 $v_e n \rightarrow e^- p$

Motivation for LAr Detector

Imaging Capabilities:

• LArTPC's can easily differentiate between an electron or photon induced electromagnetic shower based on ionization of the first few cm of the EM-shower

Cross Sections and R&D

Cross Section:

- First high statistics measurement of neutrinos on LAr
- High resolution events allow for great signal to background separation

R&D:

- Argon purity in a unevacuated detector
- Large scale cryogenic low-noise electronics
- Understanding construction costs of large detectors

Process		No.	Events
ν_{μ} Eve	ents (By Final State Topology)		
CC Inclusive			88,098
CC 0 π	$\nu_{\mu}N \rightarrow \mu + Np$		$56,\!580$
	$\nu \nu_{\mu} N \rightarrow \mu + 0 p$		$12,\!680$
	$\cdot \ \nu_{\mu}N \to \mu + 1p$		$31,\!670$
	$\cdot \ \nu_{\mu}N \to \mu + 2p$		5,803
	$\cdot \ \nu_{\mu}N \to \mu + \ge 3p$		6,427
CC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$		$21,\!887$
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \geq 2\pi^{\pm}$		1,953
$CC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$		$9,\!678$
NC Inclusive			33,000
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$		21,509
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$		4,886
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$		635
$\rm NC \geq 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$		$6,\!657$
	$\nu_e \ Events$		
CC Inclusive			567
NC Inclusive			207
Total ν_{μ} and ν_{e} Events			121,099

Why Argon?

	He	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ I atm	4.2	27.1	87.3	120.0	165.0	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3.0	L.
Radiation Length [cm]	755.2	24.0	14.0	4.9	2.8	36.1
Scintillation [γ/MeV]	19,000	30,000	40,000	25,000	42,000	
dE/dx [MeV/cm]	0.24	1.4	2.1	3.0	3.8	1.9
Scintillation λ [nm]	80	78	128	150	175	

- High density (good target)
- Small radiation length (~14cm)
- Good dielectric properties

- Track ionizations can drift over long distance if kept pure
- Argon is relatively inexpensive

How a TPC Works

- Neutrino interactions in LAr produce ionization tracks and scintillation light
- Photomultiplier tubes instantly see scintillation light and start recording data
- A uniform electric field drifts the ionization electrons to wire planes
- Data is read out from sense wires and reconstructed using wire and time information

MicroBooNE TPC

Č

TPC Dimensions:

- 10.3 m long x 2.3 m tall x 2.5 m wide (drift distance)
- 87 tons active mass
- 3 wire planes u,v,y (u,v ± 60°)

Wire Installation

8256 Sense Wires:

- 3456 collection wires (vertical)
- 4800 induction wires (+/- 60°)

Wires are 150µm diameter

• SS Cu/Au plated

All Wires Tensioned to 0.7kg

Transparency Condition

 $ho = 2\pi r/p$ r = radius p = pitch

PMT's

- Liquid argon produces scintillation light at 128nm (VUV)
- Acrylic plates coated with Tetraphenyl Butadiene(TPB) shift the light's wavelength from 128 → 425 nm
- Two components of scintillation light
 - Fast: 6ns after interaction(25%)
 - Slow: 1.6µs after interaction(75%)
- PMT's are used as a trigger and cosmic ray rejection
- MicroBooNE implements an array of 32 PMT's

Cryostat/Installation

- The MicroBooNE Cryostat is designed to hold 170 tons of LAr
- Single walled vessel that will be insulated with foam during operation

1660

Current Status Future Plans for MicroBooNE

- TPC is currently in the cryostat
- Final adjustments underway in preparation to permanently welding the vessel closed
- Transport TPC+cryo to Liquid Argon Test Facility(LArTF)

- Connect cryogenic systems
- Foam insulate detector
- Begin cooling down detector
- Take data!

Thanks for listening & Look forward to an exciting year for MicroBooNE!
